# Talk:Reflector

## p138

Is there a period 138 90° reflector? --Axaj 04:51, 2 October 2009 (UTC)

138 is a multiple of 46, and there is a plethora of p46 reflectors. I only know of the following, which are provided in Jason Summers' collection:

```x = 266, y = 144, rule = B3/S23
244boo\$boo5boo52boo50boo5boo47boo5boo48boo15bobo7boo\$boo5boo52boo50boo
5boo47boo5boo48boo17bo7boo\$244b3o4\$244b3o\$227boo17bo\$227boo15bobo\$b3o
3b3o52b3o3b3o99b3o3b3o65boo\$obbo3bobbo50bobbo3bobbo97bobbo3bobbo\$oobo
3boboo50boobo3boboo97boobo3boboo6\$81boo30boobo3boboo\$81bobo29bobbo3bo
bbo\$81bo32b3o3b3o\$177bo\$175booboo\$175booboo\$\$174bobobobo\$256bo\$175boob
oo75b3o\$boo5boo52boo5boo43boo54boo4b3o76boboo\$boo5boo12boo38boo5boo43b
oo54boo5bo78b3o\$22bobo67b3o161boo\$22bo69bo\$93bo6\$133boo\$133bobo\$133bo\$
33b3o\$33bo\$34bo154b3o\$189bo\$190bo4\$256bo\$144b3o108b3o\$144bo109boobo\$
45boo98bo108b3o\$45bobo207boo\$45bo155boo\$201bobo\$201bo11\$66boo5boo\$66b
oo5boo3\$133boo5boo47boo5boo34boo\$boo5boo123boo5boo47boo5boo34boo\$boo5b
oo7\$232b3o3b3o\$134bo5bo90bobbo3bobbo\$133b3o3b3o89boobo3boboo\$133boboob
oobo\$65boobo3boboo59booboo112boo\$65bobbo3bobbo59booboo111boo\$66b3o3b3o
60booboo113bo\$\$188boobo3boboo\$oobo3boboo177bobbo3bobbo\$obbo3bobbo178b
3o3b3o\$b3o3b3o\$133b3o\$133b3o\$\$132booboo127bo\$132bo3bo126boo\$58b3o3b3o
12b3o51b3o127bobo\$57bobbo3bobbo11bo54bo5boo47boo41boo5boo\$boo54boobo3b
oboo12bo59boo47boo41boo5boo\$boo120boo\$106boo15bobo\$106boo17bo\$123b3o\$
209boo\$208boo\$210bo\$18boo103b3o\$18bobo70boo13boo17bo\$18bo72bobo12boo
15bobo\$91bo31boo5\$58boo5boo154bo\$58boo5boo153boo\$220bobo\$15boo125bo\$
15bo125boo\$16b3o122bobo\$18bo9\$41boo110boo\$41bobo108boo\$41bo112bo9\$165b
o\$164boo\$164bobo!
```

These should all work at the period of 138. --Calcyman 14:56, 5 October 2009 (UTC)